Sampling Methods for Shortest Vectors, Closest Vectors and Successive Minima

نویسندگان

  • Johannes Blömer
  • Stefanie Naewe
چکیده

In this paper we introduce a new lattice problem, the subspace avoiding problem (Sap). We describe a probabilistic single exponential time algorithm for Sap for arbitrary `p norms. We also describe polynomial time reductions for four classical problems from the geometry of numbers, the shortest vector problem (Svp), the closest vector problem (Cvp), the successive minima problem (Smp), and the shortest independent vectors problem (Sivp) to Sap, establishing probabilistic single exponential time algorithms for them. The result generalize and extend previous results of Ajtai, Kumar and Sivakumar. The results on Smp and Sivp are new for all norms. The results on Svp and Cvp generalize previous results of Ajtai et al. for the `2 norm to arbitrary `p norms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New transference theorems on lattices possessing n∈-unique shortest vectors

We prove three optimal transference theorems on lattices possessing n -unique shortest vectors which relate to the successive minima, the covering radius and the minimal length of generating vectors respectively. The theorems result in reductions between GapSVPγ′ and GapSIVPγ for this class of lattices. Furthermore, we prove a new transference theorem giving an optimal lower bound relating the ...

متن کامل

On the distribution of angles between the N shortest vectors in a random lattice

We determine the joint distribution of the lengths of, and angles between, the N shortest lattice vectors in a random n-dimensional lattice as n → ∞. Moreover we interpret the result in terms of eigenvalues and eigenfunctions of the Laplacian on flat tori. Finally we discuss the limit distribution of any finite number of successive minima of a random n-dimensional lattice as n → ∞.

متن کامل

A new transference theorem and applications to Ajtai's connection factor

We prove a new transference theorem in the geometry of numbers, giving optimal bounds relating the successive minima of a lattice with the minimal length of generating vectors of its dual. It generalizes the transference theorem due to Banaszczyk. We also prove a stronger bound for the special class of lattices possessing n-unique shortest lattice vectors. The theorems imply consequent improvem...

متن کامل

Finding Shortest Lattice Vectors in the Presence of Gaps

Given a lattice L with the i-th successive minimum λi, its i-th gap λi λ1 often provides useful information for analyzing the security of cryptographic scheme related to L. This paper concerns short vectors for lattices with gaps. In the first part, a λ2-gap estimation of LWE lattices with cryptographic significance is given. For some γ′, a better reduction from BDDγ′ to uSV Pγ is obtained in t...

متن کامل

Approximating Shortest Lattice Vectors is not Harder than Approximating Closest Lattice Vectors

We show that given oracle access to a subroutine which returns approximate closest vectors in a lattice, one may find in polynomial time approximate shortest vectors in a lattice. The level of approximation is maintained; that is, for any function f , the following holds: Suppose that the subroutine, on input a lattice L and a target vector w (not necessarily in the lattice), outputs v ∈ L such...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007